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Abstract

Our paper presents a methodology to study the heterogeneous effects of economy-wide

shocks and applies it to the case of the impact of the COVID-19 crisis on exports.

This methodology is applicable in scenarios where the pervasive nature of the shock

hinders the identification of a control group unaffected by the shock, as well as the

ex-ante definition of the intensity of the shock’s exposure of each unit. In particular,

our study investigates the effectiveness of various Machine Learning (ML) techniques

in predicting firms’ trade and, by building on recent developments in causal ML, uses

these predictions to reconstruct the counterfactual distribution of firms’ trade under

different COVID-19 scenarios and to study treatment effect heterogeneity. Specifically,

we focus on the probability of Colombian firms surviving in the export market under

two different scenarios: a COVID-19 setting and a non-COVID-19 counterfactual

situation. On average, we find that the COVID-19 shock decreased a firm’s probability

of surviving in the export market by about 20 percentage points in April 2020. We

study the treatment effect heterogeneity by employing a classification analysis that

compares the characteristics of the firms on the tails of the estimated distribution of

the individual treatment effects.
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1 Introduction

This paper presents a methodology to study the heterogeneous effects of economy-wide

shocks, applicable in scenarios where neither a control group unaffected by the shock nor an

ex-ante definition of each unit’s exposure intensity is possible. We apply this methodology

to the impact of the COVID-19 crisis on exports. In particular, we aim to estimate the

causal effect of COVID-19 on a firm’s probability of survival in the export markets and to

study the heterogeneity of this effect. The main hurdles for this evaluation task are related

to the pervasiveness of the COVID-19 shock. On the one hand, the fact that all firms are

eventually directly or indirectly exposed to the effects of the COVID-19 crisis makes it hardly

possible to find a control group of firms to be used to build a counterfactual non-COVID-19

scenario. On the other hand, adopting a continuous treatment variable would imply defining

ex-ante the main patterns through which the COVID-19 shock has affected firm-level trade.

This task is highly demanding, given that the economy-wide impact of the shock is coupled

with complex interdependencies between firms and products across sectors and countries, as

underlined below. The paper’s main idea is to address these evaluation challenges, which are

present when studying the heterogeneous impact of economy-wide shocks, by leveraging the

predictive capabilities of Machine Learning (ML) techniques.

The COVID-19 outbreak has affected the world economy, generating unprecedented

health, human, and economic crises. To face the health crisis, governments implemented

social distancing and lockdown policies, exacerbating supply and demand shocks (World

Bank, 2020). In a highly interconnected world, the impact of the pandemic on international

trade has gained great attention (Felbermayr and Görg, 2020; Antràs et al., 2020; Bonadio

et al., 2020; Evenett, 2020). Global trade, which is typically more volatile than output and

tends to fall sharply during a crisis, has shown the biggest fall since the 2009 global financial

crisis. From the beginning of the COVID-19 epidemic, scholars underlined that, though its

impact on international trade could have been comparable to the Great Trade Collapse of

2008-2009, this time, the demand side shock is accompanied by a supply-side shock (Baldwin

and Tomiura, 2020). Moreover, this supply-side effect could be reinforced by a supply-side

contagion via importing/supply chains, which have grown in relevance during the last decade

(Antras and Chor, 2022). In other words, supply disruptions in the countries providing

intermediate inputs to a given country are likely to hurt also its export performance (Halpern

et al., 2015; Navas et al., 2020).

We focus on Colombian exporters because of the vulnerability of the Colombian economy

to the COVID-19 shock and the availability of customs data. Similar to many other developing

and developed countries, in 2020, Colombia has witnessed domestic supply and demand

shocks related to factory closures, cessation of some public services, and disruptions in the

supply chains. We find significant sectoral heterogeneity in the impact of COVID-19. We

highlight that more affected firms tend to be small-sized (in terms of previous trade flows)

and more exposed to export destinations and import source countries that are more severely
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hit by the containment policies related to the COVID-19 shock. Finally, we unveil that the

degree of geographical diversification and involvement in the import market are important

determinants of resilience to the COVID-19 shock.

By interpreting exporters’ dynamics as a complex learning process,1 this paper’s first

contribution is exploring and comparing the effectiveness of different ML techniques in

predicting firms’ trade status in two different scenarios, a COVID-19 and a non-COVID-19

setting. ML techniques have been successfully applied to predict firm performances in

high-dimensional contexts (Bargagli-Stoffi et al., 2020) in which the number of potentially

relevant explanatory variables is very high. Our paper fits into a nascent literature that is

applying ML techniques to study international trade patterns (Breinlich et al., 2022) and,

up to what we know, in our study for the first time ML techniques are used to investigate

firm-level international trade performance. Estimating more accurately the likelihood of a

firm’s success in exporting could be useful to increase the effectiveness of export promotion

agencies (Van Biesebroeck et al., 2015) by helping them target their activities. However,

the effectiveness of ML in improving the prediction of a firm’s success cannot be taken for

granted, especially for developing countries, as shown by McKenzie and Sansone (2019).

This paper’s second and main contribution is to show how to use these predictions to

estimate the causal effect of the COVID-19 shock at the firm level and to study its possible

heterogeneity. We use the estimated ML model with the best performance in predicting the

2019 export status of firms exporting in 2018 to build a 2020 non-COVID-19 counterfactual

outcome for firms exporting in 2019. Then, we compare these counterfactual non-COVID-19

firm-level export probabilities with the predicted probabilities of the best-performing

ML model using the characteristics of 2019 exporters to predict their export status in

2020. The latter estimated probabilities summarize the information on the observed

COVID-19 scenario and express it in a metric comparable with the estimated counterfactual

non-COVID-19 outcomes. In the literature using ML counterfactuals (Cerqua and Letta,

2020; Fabra et al., 2022), it is instead common to estimate causal effects by comparing the

counterfactual predictions with the observed outcome in case of treatment, following the

so-called “consistency assumption”: if the outcome in case of treatment is observed then

it also represents the potential outcome under treatment. We follow Chernozhukov et al.

(2020) by using ML techniques to reconstruct firm potential outcomes in case of no treatment

and to predict the outcomes in the treatment scenario. From a methodological standpoint,

our study represents the pioneering application and adaptation of the generic machine

learning tools proposed by Chernozhukov et al. (2020) in a context where a control group is

1Firms have heterogeneous and incomplete information about the trade opportunities. This is true both
on the exporting and the importing side of firm activities. For example, in Albornoz et al. (2012) and Eslava
et al. (2015) exporting firms are uncertain and learn about the appeal of their products and, more in general,
about the profitability of exporting their products on the international markets. By searching for clients
and observing their realized profitability, firms update their beliefs about their capabilities in international
markets.
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unavailable.2 Furthermore, we provide guidance on utilizing in-time placebo tests to assess

the credibility of counterfactual estimates. Additionally, we compare the estimation results

of the average treatment effect and treatment effect heterogeneity obtained by employing the

predicted outcomes in the case of treatment, as proposed by Chernozhukov et al. (2020)),

with those obtained using the observed outcomes (i.e., following the Cerqua and Letta (2020)

and Fabra et al. (2022) approach). Our findings suggest that while the estimates of the

average treatment effect remain robust across methodologies, the former approach should

be preferred when the objective is to identify the observations with the highest and lowest

treatment effects, and subsequently determine the factors contributing to treatment effect

heterogeneity.

Examining the heterogeneous effects of economy-wide shocks is a crucial undertaking as

it represents the foundational stage in devising policy interventions intended to mitigate their

deleterious outcomes and reactivate economic operations. However, from a methodological

point of view, investigating the treatment effect heterogeneity is not a straightforward task

when its potential determinants are many. The traditional approach splits the sample into

groups to assess the significance of the difference in the treatment effects of the groups.

Unfortunately, this approach is prone to overfitting, and finding statistically significant

differences out of all possible splits might be entirely due to random noise. Recently, new

tools based on ML have been developed to identify subgroups that are particularly responsive

to the treatment (Athey et al., 2019; Chernozhukov et al., 2020). Building on the recent

progress in causal ML application to the analysis of heterogeneous effects, in this paper we

adopt an agnostic ML model to investigate treatment effect heterogeneity. In particular, we

interpret the estimated effects stemming from our ML counterfactual empirical model by

using the Sorted Effects method (Chernozhukov et al., 2018, 2020). This method focuses on

the tails of the estimated distribution of the firm-level treatment effect to identify the units

that are most affected and those that are least affected by the treatment (whose characteristics

are compared). We provide evidence that contrasting the estimated counterfactual outcomes

with the outcomes predicted for the treatment scenario (and not directly with the observed

outcomes under treatment) is crucial to correct the estimation error arising from the imperfect

reconstruction of the unobservable counterfactual.

Our paper is connected to the literature on the heterogeneous impact of the COVID-19

shock on trade. Using firm-level monthly data on Spanish trade in goods, de Lucio et al.

(2020) find that exports decreased more in countries that introduced strict policies to contain

COVID-19 and for goods that are consumed outside the household, particularly between

March and May, showing how Spain’s export performance during the pandemic depends on

COVID-19-induced demand shocks in export markets and the characteristics of products.

Using monthly bilateral product-level trade flows that cover three-quarters of world trade,

2For an application of the generic machine learning methodology to the standard setting of a randomized
controlled trial see Magnan et al. (2021).
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Berthou and Stumpner (2022) also find that the impact of the COVID-19 shock on exports

was particularly strong in the spring of 2020, and that demand shocks related to COVID-19

impacted exports directly (shocks in importing countries) but also indirectly (shocks in third

countries). Using a sector-level gravity model, Espitia et al. (2021) show that, during the

COVID-19 crisis, sectors that tend to be relatively less internationally integrated suffered

less from foreign shocks but were more vulnerable to domestic shocks. Using data on Chinese

imports at the country-product level, also Liu et al. (2021) show that the COVID-19 effects

are heterogeneous, being weaker for medical goods and stronger for durable consumption

goods. All these papers base their identification strategy of the average COVID-19 effect on

the cross-country differences in the implementation of lockdown measures over time and study

treatment effect heterogeneity by focusing on subsamples or interacting the treatment variable

with other possible determinants of heterogeneity. We share with these studies the ambition

to estimate the causal impact of COVID-19 on trade and its possible heterogeneity. However,

we use a different approach based on constructing a counterfactual using the predictive power

of ML that, as explained above, recognises that all firms are directly or indirectly affected

by this economy-wide shock and that it is very challenging to define ex-ante a variable

summarising the (differential) exposure of firms to COVID-19. Moreover, we implement the

heterogeneity analysis by using a classification analysis that safeguards against the risks of

overfitting and multiple testing. Among the possible determinants of heterogeneity, we also

consider a firm’s diversification on the export and import side. Therefore, our study is also

related to the international trade literature on the role of diversification in mediating the

impact of adverse shocks (Kramarz et al., 2020; Grossman et al., 2021; Lafrogne-Joussier

et al., 2022).

The paper is structured as follows. Section 2 details our empirical strategy. Section 3

presents the firm-level data, variables employed in the analysis, and descriptive statistics.

Section 4 reports the estimation results, and Section 5 summarizes our findings and discusses

the relevance and limitations of our analysis.

2 Methodological framework

This section lays out our empirical approach to estimating the effect of an economy-wide

shock on firms’ survival probabilities in export markets and exploring its heterogeneity based

on firms’ observable attributes.

As with any evaluation study, the primary identification task is to find a counterfactual

outcome for the affected units, which is unobserved. In the presence of an economy-wide

shock such as COVID-19, no subset of unaffected firms can likely be selected as a control

group because the shock impacts, at least indirectly, all firms. Furthermore, even an

identification strategy based on comparing individual firms subject to different treatment

intensities appears infeasible due to the complex and ex-ante unknown paths through which
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firms are potentially exposed to the treatment. Though we study whether treatment effect

heterogeneity depends, inter alia, on measures of the exposure to the COVID-19 shock,3 the

intensity of treatment might also depend on other firms’ characteristics, such as the identity

of suppliers and clients, the characteristics of the traded final product, among many others,

that we cannot know in advance and whose interactions are a priori unknown.

Therefore, as it is often practised when studying large-scale shocks’ effects, we must

employ the information on the pre-shock behavior to estimate the counterfactual behavior

(in the hypothetical situation of the absence of the shock) during the actual shock. This

process involves forecasting the future conduct of entities based on their historical behavior,

an application perfectly suited to ML techniques, which are designed for such out-of-sample

prediction tasks.

In line with the reasoning of Varian (2016), and drawing parallels with the applications

employed by Cerqua and Letta (2020), and Fabra et al. (2022), we harness the predictive

strength of ML techniques. This allows us to construct a hypothetical scenario for firm-level

outcomes during the shock period, using pre-shock data concerning firms’ export behaviors

and attributes. We aim to study whether a firm that was exporting in a given month during

the pre-shock year ts−1 (that is 2019 in our specific application) will export again during

the same month of the year of the shock ts (that is 2020 in our specific application). The

empirical analysis we shall describe is carried out for each month separately to allow the

effects of the explanatory variables (e.g., the hypothesized determinants of firm export status)

to vary throughout the year.

Let us define the potential outcome under the scenario d ∈ {0, 1} for a firm i at the time

t as Y d
it . In this case, d represents an indicator variable signifying the presence of the shock.

More precisely, the outcome of our interest is the firm’s export status, which is equal to one

if a firm exporting at year t− 1 in a given month is also exporting at year t during the same

month (otherwise it will be zero). Note that the regressors, Xd
it, may also be influenced by

the presence or absence of the shock.

The initial step in our analysis involves estimating the counterfactual outcome at ts: Y
0
i,ts .

The model we utilize to derive this counterfactual (and the counterfactual itself) is referred to

as the “Shock Unaware Machine” (SUM), a term acknowledging the ML techniques employed

in constructing the counterfactual and the fact that no information about the shock is used

in the analyses. In particular, we use the outcomes and covariates observed at ts − 1 and

ts − 2 to reconstruct Y 0
ts based on the following assumptions (for ease of notation, we shall

omit the subscript i from this point forward):

(i) Neither covariates nor outcomes of ts − 2 and ts − 1 are affected by the shock:

Yt = Y 0
t = Y 1

t , Xt = X0
t = X1

t for t = (ts − 1, ts − 2) (1)

3These indexes are described in detail in section 3. They are based on firms’ past export and import
activities in different countries and on the time-varying strength of the virus and the stringency of the
policies aimed at mitigating its spread.

6



(ii) Define Y 0
t = f 0

t (X
0
t−1) + u0

t , where f 0
t (·) is a generic model or function representing

the relationship between explanatory variables and the outcome in the absence of

the shock such that E[Y 0
t |X0

t−1] = f 0
t (X

0
t−1). Under (i), for t = ts − 1 we have that

Yts−1 = f 0
ts−1(Xts−2) + u0

ts−1 such that E[Yts−1|Xts−2] = f 0
ts−1(Xts−2). The second

assumption states that the function f 0
t does not depend on t, i.e., it is stable over the

two considered years:

f 0
ts−1 = f 0

ts = f 0. (2)

Therefore, under the above assumptions, we can write Y 0
ts = f 0(Xts−1) + u0

ts , such

that E[Y 0
ts |Xts−1] = f 0(Xts−1), and we can use data on ts − 2 and ts − 1 to estimate

Y 0
ts−1 = f 0(Xts−2) + u0

ts−1 and retrieve f̂ 0. By applying this invariant estimated function to

the covariates of ts − 1, we can obtain the predictions for the counterfactual (without the

shock) outcome in ts:

Ŷ 0
ts = f̂ 0(Xts−1) = Y 0

ts −
Prediction error︷ ︸︸ ︷
E0
ts(Xts−1) −

Orthogonal error︷︸︸︷
u0
ts . (3)

In general, the estimated counterfactual outcome at time ts, denoted by Ŷ 0
ts , is not a

perfect estimate of Y 0
ts . This imprecision arises due to two aspects: firstly, f̂ 0 is not an exact

estimate of f 0 thereby generating a prediction error, which we represent as E0
ts(Xts−1) =

f 0(Xts−1) − f̂ 0(Xts−1) in the above equation. Secondly, there exist other determinants of

the outcome that are orthogonal to the covariates, represented as u0
ts in the formula. The

imprecision emanating from the estimation of f 0, which could differ depending on a firm’s

characteristics Xts−1, can be mitigated by exploring various ML techniques and employing

the one that delivers the best out-of-sample performance.4

In the application we present in this paper, we rely on the “K-fold” cross-validation

method (with K = 5) to discriminate between the considered ML techniques. We randomly

divide the set of exporters observed in ts−2 = 2018 (considering the exporting success during

the same month in ts − 1 = 2019 as the outcome) into 5 equally sized groups and obtain

the predictions for the firms belonging to a group by estimating Y2019 = f 0(X2018) + u0
2019

with different ML models on the firms belonging to the other groups. Then we compute

the accuracy of the different models for each month and choose the model with the best

average performance across months. Notice that this comparison is entirely based on the

pre-pandemic accuracy of the ML models by comparing the predictions Ŷ2019 with the

observed Y2019, not on its merits in predicting the firms’ outcomes in 2020. Finally, we obtain

the Ŷ 0
2020 by estimating Y2019 = f 0(X2018) + u0

2019 on the entire set of 2018 units (also in this

case month by month) and, as shown in (3), applying the estimated function f̂ 0 to the set of

2019 units. Given that during the first three months of 2020 Colombia was in practice not

exposed to COVID-19 (and therefore Y2020 = Y 0
2020), if assumption (2) holds, we expect that

4In order to simplify the notation, from now on, we will denote Ed
ts(Xts−1) as Ed

ts .
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in those months the accuracy of the predictions Ŷ2019 obtained in the cross-validation step

for 2019 will be very similar to the accuracy of Ŷ 0
2020 for 2020.

Following Cerqua and Letta (2020) and Fabra et al. (2022), we define as an estimator of

the individual-specific shock effect α the simple comparison of the observed outcome under

the shock in ts with the estimated counterfactual outcome. This comparison is represented

as:
ˆ̂α = Yts − Ŷ 0

ts . (4)

This provides the full distribution of treatment effects.

Starting from Eq. (4), by taking the expected value of the individual treatment effect ˆ̂α

for those units with Xts−1 = xts−1, we can define the following estimator of the conditional

average treatment effect (CATE; the average effect for those units with X2019 = x2019) as

E[ ˆ̂α|Xts−1 = xts−1] = E[(Yts − Y 0
ts)− E0

ts − u0ts |Xts−1 = xts−1] =

= ∆(Xts−1 = xts−1)︸ ︷︷ ︸
CATE

−E[E0
ts |Xts−1 = xts−1]−E[u0ts |Xts−1 = xts−1]︸ ︷︷ ︸

=0 by assumption

,

where,

∆(Xts−1 = xts−1) = E[Yts − Y 0
ts |Xts−1 = xts−1].

(5)

Therefore E[ ˆ̂α] identifies the unconditional average treatment effect, E[∆(Xts−1)] = ∆, if on

average the prediction error is zero: E[E0
ts ] = 0. The conditional average treatment effect,

∆(Xts−1 = xts−1), is identified by E[ ˆ̂α|Xts−1 = xts−1] if on average the prediction error is

zero in the relevant sub-sample: E[E0
ts|Xts−1 = xts−1] = 0.

Now let us decompose the outcome observed in ts in the presence of the shock, Y 1
ts , in a

generic model or function f 1(X1
ts−1), which represents the relationship between explanatory

variables and the outcome during the shock, and other determinants of the outcome, u1
ts ,

that are orthogonal to the covariates

Y 1
ts = f 1(X1

ts−1) + u1
ts , s.t. E[Y 1

ts|X
1
ts−1] = f 1(X1

ts−1). (6)

Given that Y 1
ts = Yts and X1

ts−1 = Xts−1, then

Yts = f 1(Xts−1) + u1
ts , s.t. E[Yts|Xts−1] = f 1(Xts−1). (7)

At this point, we can define an alternative estimator of the individual-specific shock effect

α as the comparison of the predicted outcome under the shock in ts with the estimated

counterfactual outcome for a given firm:

α̂ = Ŷts − Ŷ 0
ts , (8)

where Ŷts = f̂ 1(Xts−1) = Yts − E1
ts − u1

ts . We call “Shock Aware Machine” (SAM) the model

that we use to predict Yts (and the predictions Ŷts themselves). The term “Shock Aware”
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is employed because this model leverages information from the observed shock scenario.

Importantly, the predictions from SAM are generated in a metric that allows them to be

directly compared with the estimated outcomes (that do not account for the shock), which

are produced by the SUM.5

In our application, the SAM expresses the outcome in 2020 of exporters operating the

foreign market in 2019 as a function of their characteristics in 2019 and the information

about governments’ shock-related stringency measures all over the world coming from Hale

et al. (2020).6 Similarly to the procedure followed to select the best-performing SUM, we rely

on a 5-fold cross-validation strategy to obtain a 2020 prediction for each firm that exported

in 2019. We randomly group the 2019 exporters into five equally sized subsets and we predict

the 2020 outcomes of the firms contained in one subset by using the information of firms

contained in the remaining four subsets. In other words, we train the models on a random

80% of the data and test them on the remaining 20% and we repeat the process five times

for each different 20% subset, thus obtaining a 2020 prediction for each 2019 exporter.

Starting from Eq. (8), by taking the expected value of the individual treatment effect α̂

for those units with Xts−1 = xts−1, we can define the following alternative estimator of the

conditional average treatment effect (for those units with Xts−1 = xts−1)

E[α̂|Xts−1 = xts−1] =E[(Yts − Y 0
ts)− (E1

ts − E0
ts)− (u1ts − u0ts)|Xts−1 = xts−1]

=∆(Xts−1 = xts−1)︸ ︷︷ ︸
CATE

−E[(E1
ts − E0

ts)︸ ︷︷ ︸
∆E

|Xts−1 = xts−1]−

E[u1ts − u0ts |Xts−1 = xts−1].

(9)

Therefore, E[α̂] identifies the unconditional average treatment effect, E[∆(Xts−1)] = ∆, if,

on average, the difference in prediction errors is zero: E[∆E ] = 0. The conditional average

treatment effect, ∆(Xts−1 = xts−1), is identified by E[α̂|Xts−1 = xts−1] if on average the

difference in prediction errors is zero in the relevant sub-sample: E[∆E|Xts−1 = xts−1] = 0.

Given the definitions of SUM and SAM, to simplify the reasoning in the following, we

refer to Eqs. (4) and (8), respectively as

ˆ̂α =Y − ŶSUM = Y − SUM. (10)

α̂ =ŶSAM − ŶSUM = SAM − SUM. (11)

The assumptions behind these identification results are not directly testable as they are

expressed in terms of the expected values of the prediction error E0
ts that is a function of the

unobservable counterfactual Y 0
ts . Table 1 distinguishes the five different scenarios concerning

the values of E0
ts and E1

ts that are relevant in determining whether applying the statistic T to

Y − SUM and SAM − SUM is able to recover the corresponding treatment effect estimand

5Notice that with ˆ̂α, we are comparing a probability (counterfactual) with a binary value (observed
outcome), while with α̂, we are comparing two estimated probabilities.

6See subsection 3.1. We do not introduce these variables explicitly as an argument of f1() to simplify
notation.
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(e.g., whether averaging the estimated individual treatment effects would recover the average

treatment effect).

Table 1: Identification of generic functions of the individual treatment effects, T, according to the
corresponding value taken by the prediction errors

T(SAM − SUM) T(Y − SUM)

T[E1
ts ] ̸= 0 and T[E0

ts ] = 0 × ✓

T[E1
ts ] = T[E0

ts ] = 0 ✓ ✓

T[E1
ts ] = 0 and T[E0

ts ] ̸= 0 × ×
T[E1

ts ] = T[E0
ts ] ̸= 0 ✓ ×

T[E1
ts ] ̸= T[E0

ts ] ̸= 0 × ×

The estimators based on Y -SUM identify the population parameters when T[E0
2020] = 0.

The estimators based on SAM -SUM are unbiased whenever T[E1
2020] = T[E0

2020]. Under the

assumption that the strength of the COVID-19 effect on export propensity was at most very

limited during the first quarter of 2020, we will use the out-of-sample prediction errors for

the first quarter of 2020 as a proxy for the unobservable behavior of E0
2020 in the following

months. Moreover, as explained in detail in section 4.2, the distribution of the estimated

treatment effects during the first quarter will be used to check the credibility of the above

assumptions for the set of all 2019 exporters and for different subsets of 2019 exporters

defined according to their characteristics X2019 or to their position in the distribution of

such effects.

As a final step, we perform the heterogeneity analysis by adapting the Sorted Partial

Effect (SPE) method introduced in Chernozhukov et al. (2018). Formally, the SPEs are

defined as percentiles of the Treatment Effects (TE) and can supply a more detailed summary

of the distribution of TE than the Average Treatment Effects (ATE), commonly employed

in econometric analysis. The SPEs are defined as

α∗(u) = uth − percentile of α. (12)

In our setting, α∗(u) is a function of Xts−1 defined over its distribution in the population of

ts − 1 exporters.

The SPEs are used to do a classification analysis (CA) that allocates the ts − 1 exporters

into two groups, the most and the least affected by the shock, according to whether their α

are lower than α∗(25) or greater than α∗(75), respectively. Notice that, since the shock effect

is negative, we have defined as the most (negative) affected units those whose α lie in the

left tail of the sorted distribution of treatment effects. Finally, to study the determinants of

treatment effect heterogeneity, we focus on the difference in means (CADiff) of the Xts−1

across the most and least affected groups. In the estimation, we use sample analogues of
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α∗(u) and CADiff . We calculate standard errors of α∗(u) and CADiff by bootstrapping

the entire estimation process, starting from the initial α estimation step.

The application of the SPE technique presents several advantages in our setting. First,

the estimated α∗(u)s provide a summary of the distribution of the estimated treatment effects

and, therefore, of treatment effect heterogeneity. Second, the CA identifies the subgroup

of the population that is more affected by the treatment and the CADiff studies how the

heterogeneity of the treatment effect depends on observables without imposing (additional)

functional form assumptions. Third, the CADiff step provides p-value adjustments to

account for the joint testing of all the covariates that are considered to detect if observables

are associated with treatment effect heterogeneity. In other words, the main idea is to test

the null hypothesis of no difference between the value of the covariates in the most and the

least affected groups by also taking into account that we conduct simultaneous inference on

multiple variables.7

Finally, notice that our approach in estimating the individual treatment effect and in

performing the heterogeneity analysis is similar to the generic ML technique presented in

Chernozhukov et al. (2020), which is adapted to a situation in which there is no available

(contemporaneous) control group (i.e., it is difficult to identify ex-ante firms that are not

affected by the shock).8

3 Data

This study focuses on the social and economic disruption caused by the COVID-19 pandemic

and its effect on Colombian exporters. This global health crisis served as a notable example

of a large-scale economic shock that profoundly impacted global trade, with the dynamics of

exporters in Colombia being significantly affected. Applying our machine learning strategy

to data collected from Colombian exporting firms during this period can yield substantial

insights into how such entities adapt and persist in the face of such extensive disruption. This

provides an understanding of market resilience and firm survival dynamics in the context of

global trade shocks. By grounding our research in a tangible case study, we maintain its

relevance to the specific scenario while preserving its potential for broader applications.

We use monthly export transaction data reported at the Colombian Customs Office

(Dirección de Impuestos y Aduanas Nacionales, DIAN) for 2018, 2019, and 2020. For

each transaction, we consider the exporter ID as the firm identifier; the date; a 10-digit

Harmonized System code (HS) characterizing the product; the product origin within Colombia

(department level); the means of transportation of the shipment; the country of destination;

and, the free on board value of the export transaction in US dollars. This data set also

contains information about the value and origin country from which a given exporter imports.

7See Online Appendix D.
8See Online Appendix E.
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We remove all transactions related to re-exports of products elaborated in other countries.

As a result, we ended up with 386,132 customs reports in 2018 (7741 firms), 402,140 in 2019

(7831 firms), and 365,626 in 2020 (7518 firms).

3.1 Control Variables

We classify products at the six-digit level of the HS code. We consider different features

of exporters according to their monthly exports: the total export (and import) value, the

number of products (NP ), the number of export destinations (ND), the number of import

origin countries (NO), the Herfindahl-Hirschman indexes at the product level (HHp) and

the destination level (HHd), and a set of dummies for the destinations and origin countries

and continents. We create a set of dummies according to the Colombian department from

which the product comes, a set of dummies for the means of transportation used, and a

set of dummies classifying the product HS-chapter and HS-section. Moreover, we build

two sets of dummy variables indicating whether a firm has experience exporting in specific

destinations and product sectors. We also account for the accumulated exporting (importing)

experience by summing up the total value exported (imported) during the last twelve months.

Furthermore, we create four size dummies classifying firms according to the quartiles of the

firm-level distribution of the total monthly log-value of exports.

To measure the COVID-19 demand and supply shock, we use the information on

government contention measures coming from Hale et al. (2020), which consists of four

indexes (ranging from 0 to 100) representing the strength of the measures taken by countries

to contain the COVID-19 outbreak. The authors provide an economic index summarizing

economic policies (E), a health index summarizing health policies (H), a government index

describing the strictness of ‘lockdown style’ policies (G), and an overall government response

index called stringency index (S). The value of these indexes ranges from 0 to 100.9 We

build two variables at the firm level for each of the four indexes, one at the export and one

at the import side, by taking a weighted average of the country-level scores according to the

proportion of the total monthly value of exports (imports) that a firm ships (source) in each

country in 2019. We call these firm-level indexes for a firm i “Containment Indexi,j,z”, with

j = {E,H,G, S} and z = {Imp,Exp}.10

Our final data set is composed of 1,975 covariates. They are presented in detail in Table

Appx.1 of Online Appendix B.

9These indexes are released daily. We average this information at the monthly level.
10The value of the Containment Stringency Index Import for firms that are not importing corresponds

to the value of the Containment Stringency Index for Colombia (as firms are sourcing all their inputs
domestically).
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4 Results

4.1 Selection of the machine learning algorithm

We evaluate and contrast the outcomes of several ML techniques against a benchmark

logistic regression, aiming to identify the model with superior prediction performance.

The out-of-sample predictive efficacy of our empirical models is crucial, given our goal to

reconstruct an unobserved counterfactual. The complexity of this task arises from its high

dimensionality and complex interdependencies between firms and products from various

sectors and export destinations. While an approach focusing on in-sample prediction accuracy

might overfit, ML techniques optimally balance the bias-variance trade-off for out-of-sample

predictions.11

We examine four distinct models: Logit, Logit-LASSO, Logit-Ridge, and Random Forest

(RF). The traditional choice for binary dependent variables, Logit, serves as our baseline. Even

though literature often shows ML techniques outperforming traditional models with numerous

predictors, we have included Logit results for comparison. The main idea of Logit-LASSO is

to mitigate overfitting by introducing a penalty term in the Logit log-likelihood function

that forces the parameters associated with the less relevant predictors to be exactly zero.

On the other hand, Logit-Ridge reduces the coefficients of less significant predictors without

eliminating any of them, proving especially useful when many variables play an important

role. The main idea behind Random Forest is the wisdom of crowds because it combines

the predictions of many uncorrelated models (the trees) obtained by randomly re-sampling

observations and explanatory variables.12 For Logit, Logit-Ridge, and Logit-LASSO models

we include interactions between the size of the company and some of the main product

characteristics, industry, sector, means of transportation as well as with destination country

dummies. Notice that Random Forest uses the variables sequentially and, therefore, with

a large enough number of trees, it is not necessary to explicitly introduce interactions as

explanatory variables, i.e., the model automatically takes into account the interactions that

are useful to accurately predict the outcome.13 The prediction analysis is repeated for all

months between January-December 2020.

11Hyperparameter tuning through cross-validation or other theory-driven methods is often critical in
order to avoid overfitting.

12Note that it is important to optimize (tune) the hyper-parameters of Logit-Ridge and Random Forest
for an accurate predicting exercise. The hyperparameter to optimize in Logit-Ridge and Logit-LASSO is λ,
which controls the impact of the penalty or shrinkage on parameters (when λ = 0 we are in a Logit scenario
when lambda increases the penalty impact grows). We find the optimal hyper-parameter for Logit-Ridge
and Logit-LASSO by choosing the λ that minimizes the mean cross-validated error. One of the main RF
parameters is the number of random trees used. Because of the RF design, it is very difficult to have
over-fitted predictions when using this model. Therefore, we set the number of trees to a large enough
number (500). We find this number is large enough after repeating the same Random Forest model with a
different number of random trees. Even with less than 500 random trees, the error rate of the model remains
unchanged.

13For more information about all the features included to build the SUM and SAM see Table Appx.1 in
Online Appendix B.
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Table 2 shows the accuracy of the model’s predictions through two widely-used classification

performance metrics: Area Under the Receiver Operating Curve (AUC) and Root-Mean-Square

Error (RMSE). The AUC achieves a value of 0.5 for random predictions and 1 when outcomes

are classified without error. Meanwhile, RMSE’s best score is 0, indicating optimal accuracy

with no fixed upper bound.

The table’s upper part displays the accuracy of predictions for the probability of exporting

in 2019 based on 2018 exporter data, serving as an out-of-sample performance benchmark in

a pre-COVID-19 context using cross-validation. Here, the Logit-LASSO and RF models arise

as top performers. The table’s middle section also shows the accuracy of models estimated

using the exporters’ characteristics in 2018 to explain their observed outcomes in 2019;

however, these models are now tested using the set of exporters of 2019 and their observed

outcomes in 2020. If the functions f 0
t representing the relationship between explanatory

variables and the outcome in the absence of the pandemic are sufficiently similar for the

pre-pandemic year and 2020 (f 0
2019 and f 0

2020, respectively), we expect that the accuracy of

f̂ 0
2019 in the first three months of 2020 (when arguably no relevant COVID-19 effect is in

place in Colombia) to be similar to that one which is observed during the same months of

2019. Indeed, during January, February, and March, the accuracy of Logit-LASSO and RF

remains unchanged, as expected, compared to the accuracy obtained in the upper part of

the table. However, a decline in accuracy appears post-April in the middle part of the tables,

demonstrating the challenges of a model not trained on COVID-19 data, predicting in a

COVID-19-impacted environment.

Models in the bottom part of Table 2 are trained and tested with the universe of exporters

in 2019 and their observed outcomes in 2020. Using these models, we construct the SAM

predictions. The accuracy of the predictions is very similar to the one obtained with the

SUM for 2019 and for the first three months of 2020. Our analysis is crucial to reach accurate

predictions because the unbiasedness of our treatment effects estimators depends on the

quality of the (counterfactual) prediction accuracy. Both the SUM and the SAM show

acceptable levels of accuracy when predictions are made with Logit-LASSO and Random

Forest.
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Table 2: Goodness of Fit for SUM and SAM in 2018/19 and 2019/20

AUC RMSE

Logit-LASSO Logit-Ridge Random Forest Logit Logit-LASSO Logit-Ridge Random Forest Logit

Goodness of Fit for SUM in 2018/19

Jan 0.73 0.53 0.73 0.59 0.40 0.45 0.41 0.64

Feb 0.70 0.50 0.71 0.58 0.41 0.45 0.41 0.64

Mar 0.70 0.56 0.71 0.57 0.41 0.44 0.41 0.65

Apr 0.73 0.59 0.73 0.60 0.40 0.43 0.40 0.63

May 0.72 0.52 0.71 0.59 0.40 0.44 0.41 0.64

Jun 0.71 0.50 0.72 0.59 0.40 0.45 0.41 0.64

Jul 0.73 0.50 0.73 0.55 0.40 0.45 0.40 0.66

Aug 0.70 0.51 0.72 0.58 0.41 0.45 0.40 0.64

Sep 0.72 0.50 0.71 0.58 0.41 0.45 0.40 0.64

Oct 0.73 0.58 0.74 0.58 0.40 0.44 0.41 0.64

Nov 0.71 0.51 0.72 0.57 0.41 0.45 0.41 0.64

Dec 0.70 0.50 0.71 0.58 0.41 0.45 0.41 0.64

Goodness of Fit for SUM in 2019/20

Jan 0.72 0.53 0.72 0.49 0.41 0.45 0.41 0.75

Feb 0.69 0.50 0.69 0.56 0.41 0.45 0.42 0.64

Mar 0.72 0.54 0.73 0.59 0.40 0.44 0.41 0.63

Apr 0.67 0.56 0.66 0.51 0.48 0.50 0.49 0.70

May 0.69 0.51 0.69 0.60 0.46 0.48 0.46 0.63

Jun 0.68 0.50 0.68 0.59 0.43 0.47 0.44 0.63

Jul 0.70 0.50 0.69 0.59 0.42 0.46 0.43 0.63

Aug 0.68 0.51 0.69 0.58 0.42 0.45 0.43 0.63

Sep 0.69 0.50 0.70 0.59 0.42 0.45 0.42 0.63

Oct 0.71 0.59 0.70 0.60 0.42 0.45 0.43 0.63

Nov 0.71 0.51 0.71 0.59 0.41 0.45 0.41 0.63

Dec 0.69 0.50 0.69 0.58 0.42 0.46 0.42 0.63

Goodness of Fit for SAM in 2019/20

Jan 0.73 0.58 0.74 0.50 0.41 0.45 0.41 0.71

Feb 0.70 0.50 0.70 0.49 0.41 0.46 0.42 0.70

Mar 0.73 0.50 0.73 0.50 0.40 0.46 0.40 0.71

Apr 0.74 0.66 0.73 0.52 0.42 0.47 0.42 0.69

May 0.76 0.74 0.77 0.50 0.41 0.46 0.41 0.71

Jun 0.73 0.69 0.73 0.48 0.42 0.46 0.42 0.72

Jul 0.73 0.63 0.72 0.51 0.41 0.45 0.42 0.69

Aug 0.72 0.50 0.72 0.53 0.41 0.46 0.42 0.69

Sep 0.71 0.50 0.70 0.55 0.42 0.47 0.42 0.67

Oct 0.72 0.50 0.71 0.52 0.42 0.46 0.42 0.70

Nov 0.72 0.52 0.72 0.49 0.41 0.45 0.41 0.71

Dec 0.71 0.51 0.70 0.51 0.41 0.45 0.42 0.70

4.2 Evaluation of the COVID-19 effect

Both Logit-LASSO and Random Forest reach high accuracy levels in the export status

prediction. As explained in section 2, the predicted probabilities are used to estimate the

average monthly effect of the COVID-19 shock as the monthly average of α̂ (the difference

between the firm-level probabilities of success predicted by the SUM and the SAM.). They

are presented in Figure 1.

Given the presumption that firms suffered a negligible COVID-19 shock impact during the

initial three months of 2020, the treatment effect estimates for this period can be viewed as a

placebo test, reminiscent of the in-time placebo test routinely employed in Synthetic Control

Methods (Abadie et al., 2015). Detecting a significant COVID-19 effect in the months

preceding the actual economic shock would suggest that our model mechanically estimates

a COVID-19 effect even in the absence of the stated shock. We conduct these placebo
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Figure 1: Average Individual Treatment Effect, by months, comparing Logit-LASSO and RF.
Standard errors were obtained with 100 bootstrap replications. Confidence intervals for a 5%
significance level.

studies also conditioning on exogenous firms’ characteristics observed in 2019 by estimating

COVID-19 effects for selected subsamples of firms according to such characteristics. We

interpret these additional placebo studies as a robustness check on our results on treatment

effect heterogeneity.

As shown in Figure 1, the probabilities obtained from the SUM and the SAM are

almost identical on average for January, February, and March. This result is reassuring

since only from March 25, 2020, the Colombian government implemented a complete and

mandatory lockdown. More in general, we can conclude that our identification strategy is

not mechanically recovering COVID-19 effects for a period with low incidence in Colombia

and in the rest of the world. We find that the peak of the COVID-19 effect is in April 2020,

when we estimate an average difference between the predicted probabilities of exporting of

nearly 20 percentage points. In the following months, the estimated average effect declines

with time.

The results indicate that both Logit-LASSO and RF models yield comparable performances.

Given their good performance and considering that Logit models are frequently used in

similar contexts, we opt for Logit-LASSO. It aligns with the conventional approaches and
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offers greater interpretability as an extension of the traditional model.14

Figure 2 shows evidence of substantial variations in the quarterly estimated average

individual treatment effect by industry. On the one hand, during the first, third, and fourth

quarters of 2020, there is no evidence supporting the existence of sectoral heterogeneity in

the COVID-19 effect, and the COVID-19 shock is economically and statistically insignificant.

Therefore, concentrating on the results for the first quarter, we are able to reject the existence

of an effect even within sectors.15 On the other hand, during the second quarter of 2020,

Colombian exporters belonging to almost every industry are found to significantly reduce

their probability of surviving in the international markets. This decline is particularly

pronounced in industries such as Textiles, Footwear, and Jewelry. However, industries like

Food Preparations and Vegetables saw minimal changes in their survival probabilities due to

the COVID-19 shock.

Quarter 3 Quarter 4

Quarter 1 Quarter 2
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Figure 2: The quarterly mean difference in the predicted probability of success (SAM vs. SUM) by
industry, using the Logit-LASSO predictions. Standard errors were obtained with 100 bootstrap
replications. Confidence intervals for a 5% significance level.

4.3 Heterogeneity of the COVID-19 effect on Colombian exporters

In this section, we investigate the determinant of possible treatment effect heterogeneity.

Figures 3 and 4 show the estimated Sorted Partial Effects (SPE) and Average Partial Effects

14Non-reported results using RF are equivalent and available upon request.
15We have conducted other similar placebo studies conditioning on other variables (e.g., the main

destination of exports, the main origin of imports,...) and in all the considered subsamples we do not estimate
any significant effect of COVID-19.
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(APE), which are obtained as explained in section 2 by month and aggregating all the months,

respectively. The two figures also report the 95% confidence intervals with blue bands for

SPE and black dashed lines for APE.

−0.4

−0.2

0.0

0.2

0 25 50 75 100
Percentile index LASSO

C
ha

ng
e 

pr
ob

ab
ili

ty
 to

 e
xp

or
t d

ue
 to

 C
O

V
ID

−
19

SPE APE

Figure 3: Annual Sorted Partial Effects (SPE) and Average Partial Effects (APE) of COVID-19 on
Colombian firm export’s status. The treatment effect is calculated as a difference between SAM
and SUM predictions. Standard errors were obtained with 100 bootstrap replications. Confidence
intervals for a 5% significance level.

Significant treatment effect heterogeneity is observed for April and May, with June

showing a milder effect. The statistically significant (negative) estimated values of α∗(u) are

primarily confined to the distribution’s left tail. However, from July onwards, the confidence

intervals of the SPEs overlap with those of the APEs, indicating an absence of treatment

effect heterogeneity. Interestingly, in the pre-pandemic months, the SPEs closely aligned with

the APEs (estimated to be zero). This demonstrates that individual placebo treatment effects

are not statistically significant throughout the distribution, not just on average, reinforcing

the robustness of our methodology across the entire distribution of treatment effects.

To identify the determinants of treatment effect heterogeneity, we examine the difference

in means (CADiff) of firm characteristics between the most and least affected groups in

Table 3. These groups are defined by whether their estimated α is lower than α∗(25th)

or greater than α∗(75th), respectively. Therefore, we compute the raw difference in the

means of the covariates between the most and the least affected firms by regressing the

variables of interest on a constant and a dummy q = 1{α≤α∗(25th)} for the observations for

which α ≤ α∗(25th) or α ≥ α∗(75th). Then, we also provide the difference in adjusted means

once we have controlled for the firm sector and month of the year. Controlling for sector

and month allows us to perform a ceteris paribus analysis, i.e., to dig into the effects of

COVID-19 within specific sectors and specific months.
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Figure 4: Monthly Sorted Partial Effects (SPE) and Average Partial Effects (APE) of COVID-19
on Colombian firm export status. The treatment effect is calculated as a difference between SAM
and SUM predictions. Standard errors were obtained with 100 bootstrap replications. Confidence
intervals for a 5% significance level.

Table 3 is divided into 3 columns according to the control variables included in the

regressions: in the first column, we show the unconditional average difference in the firms’

characteristics between the most and least affected firms; in the second column, we control for

the firm sector; and, in the third column, we control for firm sector and month of observation.

The firm characteristics that we consider to explore the sources of COVID-19 treatment effect

heterogeneity among Colombian exporters are observed in 2019 (the year before receiving the

treatment). First, we check whether the estimated individual treatment effect (TE) differs

between the firms contained in the two groups by using the TE as the dependent variable.

We then move to firm-sector specific characteristics. In particular, the first set of firm

characteristics that we use as dependent variables are dummies indicating the industry where
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Table 3: Estimated differences in means of the estimated treatment effect and other covariates
between the group of more affected and the group of less affected firms (CADiff) applying the
classification analysis to the SAM − SUM estimates

Outcome variable (1) (2) (3)

TE −0.3130∗∗∗ −0.3060∗∗∗ −0.2790∗∗

Agriculture -0.1940
Chemicals -0.0057
Manufacturing -0.0092
Metals 0.0134
Special 0.0056∗∗∗

Textile 0.1600∗∗∗

Wood 0.0292∗∗∗

Air 0.2030∗ 0.1680∗∗∗ 0.2040∗∗∗

Land 0.0340 0.0249 0.0170
Sea −0.2360∗∗∗ −0.1920∗∗∗ −0.2200∗∗∗

Jan -0.0738 −0.0766∗∗∗

Feb -0.0710 −0.0768∗∗∗

Mar -0.0751 −0.0773∗∗∗

Apr 0.1860∗∗∗ 0.1950∗∗∗

May 0.1770∗∗∗ 0.1820∗∗∗

Jun 0.0754 0.0784∗∗∗

Jul 0.0132 0.0159
Aug 0.0021 0.0008
Sep −0.0412∗∗∗ −0.0406∗∗

Oct −0.0604∗∗∗ −0.0609∗∗

Nov −0.0723∗∗∗ −0.0763∗∗

Dec -0.0557 −0.0621∗∗

Number of export destinations (ND) -0.1990 -0.1640 -0.2480
Number of import origins (NO) -1.7470 −1.9820∗∗∗ −2.4440∗∗

Number of exported products (NP) 0.2400 -0.2570 -0.3440
Containment Index Stringency Export 19.3600∗∗∗ 19.5100∗∗∗ 7.1800∗

Containment Index Stringency Import 19.1100∗∗∗ 20.8000∗∗∗ 7.2490∗∗∗

Value Exported (log) −0.5110∗∗∗ -0.4490 −0.5700∗

Value Imported (log) −1.8160∗∗∗ −2.2020∗∗∗ −2.6860∗∗∗

Deviation from sectoral mean ✓ ✓
Deviation from monthly mean ✓

Notes: column (1) does not include sector or month variables in the regression; column
(2) includes sectors in the regression; and, column (3) includes both the sector and month
variables. ∗∗∗ means significant at 1%, ∗∗ at 5%, and ∗ at 10%. Standard errors are obtained
by bootstrapping the whole estimation process, and joint p-values are adjusted to consider
the simultaneous testing of all variables.

the exporters operate.16 We also investigate the CADiff for the means of transportation and

the months when firms operate. Moreover, to account for the role of diversification patterns,

we also consider as dependent variables the number of export destinations (ND), import

origins (NO), and products (NP ) exported. The weighted Containment Stringency Index

that exporters face when exporting (importing) allows us to study to what extent treatment

16We aggregate the 22 industries defined in the main analysis as follows. “Agriculture” contains Animals
(01), Vegetables (02), Fats/oils (03), and Prepared Foodstuffs (04). “Chemicals” includes Chemical (06), and
Plastics (07). “Manufacturing” contains Machinery (16), Vehicles (17), and Manufactured (20). “Metals”
aggregates Mineral (05), Cement (13), Jewelries (14), and Metals (15). “Special” includes Precision
Instruments (18), Arms (19), Art (21), and Special (22). “Textile” contains Leather (08), Textile (11), and
Footwear (12). Finally, “Wood” aggregates Wood (09), and Paper (10). See Table Appx.2 in the Online
Appendix for the complete industry names.
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effect heterogeneity depends on these measures of direct exposure (to COVID-19 through

their activities on international markets). A traditional continuous-DID strategy would have

used these exposure variables as treatment variables, assuming that any COVID effect would

emanate through them. Finally, including the total value exported (imported) by firms

–expressed in logarithm– among the variables for which the CADiff is computed highlights

the difference in the quantities sold (purchased) by most and least affected companies. A

discussion of the main findings follows.

Considering the estimated individual treatment effects (TE) as a dependent variable, we

find a negative and significant difference between most and least affected firms independently

of the set of controls employed. These results show that the most affected exporters–i.e.,

those located in the first SPE quartile distribution–experienced a decrease in the probabilities

of exporting between 27.9 and 31.3 percentage points lower than the one experienced by the

least affected firms–i.e., those located in the last SPE quartile.

We found significant differences among firms when examining how different aggregate

sectors are affected. For instance, we detect that the share of textile firms among the most

affected 2019 exporters is 16 percentage points higher with respect to the one estimated for

the group of the least affected firms. Likewise, there is a difference of 2.9 percentage points

in the presence of wood exporters between the most and least affected groups.

We also detect the existence of treatment effect heterogeneity associated with the means of

transportation used by exporters in 2019. On the one hand, there are 16.8 to 20.4 percentage

points more exporters using air transportation among the most affected than among the

least affected firms. However, there are 19.2 to 23.6 percentage points fewer Colombian

exporters using the sea for shipping among the most impacted firms compared to the least

affected ones (Nitsch, 2022).

Looking at the treatment effect heterogeneity associated with months, the first pattern

we notice is that only the months from April to August have a positive estimated parameter.

However, only April and May estimated differences are statistically significant. There are

18.6 to 19.5 percentage points (17.7 to 18.2) more firms in April (May) among the most

affected than among the least affected firms. From September to November, the coefficients

become negative and significant, indicating the beginning stages of recovery.

To evaluate how ex-ante exporter diversification affects the COVID-19 effect, we explore

the estimated parameters associated with ND, NO, and NP . We want to investigate whether

Colombian exporters’ supply chain diversification and export destination diversification help

mitigate the COVID-shock. We do not find compelling evidence that ex-ante diversification

helps to face a shock of this kind, as we can evince from the estimated parameters associated

with ND, NP , and, in the first column, to NO. Following the reasoning of Lafrogne-Joussier

et al. (2022), which exploits the COVID-19 crisis to study the export consequences of a

country-specific supply-side shock by concentrating on the differential import exposure of

French firms to the Chinese early lockdown, one possible explanation is that firms cannot
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substitute away the partner (or the product) under COVID-19. Another possible explanation,

which they offer, is that exporters that do not diversify ex-ante can benefit from some form

of ex-post diversification. However, when they restrict the analysis to homogeneous inputs,

Lafrogne-Joussier et al. (2022) find weak evidence of a larger COVID-19 effect for firms with

non-diversified inputs. They restrict the sample to homogeneous inputs because they want

to analyze the COVID-19 effect among inputs expected to be substituted. Similarly, once we

control for the sector and, therefore, inter alia, for the fact that some sector has relatively

more diversification potential, the negative estimated difference turns statistically significant.

Indeed, within sectors, the most affected Colombian exporters tend to import from 1.98

fewer countries in 2019 than the least affected firms. The economic size of this estimate is

large as approximately 60 per cent of Colombian exporters are not integrated into global

value chains (they do not import), and the mean of NO is approximately 4.16 origins.

The CADiff estimated when using the Export (Import) Containment Stringency Index

as dependent variables provides insightful hints on the difficulties of Colombian firms

in exporting (importing) to (from) countries adopting severe stringency measures. In

particular, the most affected Colombian exporters face, on average, a higher Export (Import)

Containment Stringency Index than those faced by least affected firms by 7.18 to 19.51 (7.25

to 20.80) points, depending on the column in the table.17

Finally, the least affected firms exported (imported) 156.7% to 176.83% (614.7% to

1467.3%) more value in 2019 than the most affected firms. As expected, Colombian exporters

trading in larger volumes (in value) are more resilient under a COVID-19 scenario. As with

diversification, the comparison of the export and import side reinforces the idea that having

more experience in sourcing inputs from abroad decreases the strength of the shock.

4.4 Estimations based on Y − SUM

In this paragraph, following Fabra et al. (2022) and Cerqua and Letta (2020), we use the

estimators based on Eq. (10). These estimators capture the differences between the observed

outcome, Y (binary variable accounting for the success of a Colombian exporter in 2020), and

its counterfactual predictions (SUM). Figure 5 shows that the average individual treatment

effect for COVID-19 is very similar when the individual treatment effect is estimated as the

average of α̂ (black line, SAM − SUM) or as the average of ˆ̂α (yellow line, Y − SUM). As

shown in Figure 5, when the interest lies in estimating the average treatment effects (by

months in this case), the results based on Y − SUM do not differ from those obtained by

using SUM − SAM . We obtain similar results for the two methodologies also in terms of

conditional treatment effects based on subgroups defined on firm characteristics (e.g., by

industry or main export destination country).

17Remember that the Index ranges from 0 to 100.
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Figure 5: Mean difference in the predicted probability of success (SAM vs. SUM / Y vs. SUM) by
month, using Logit-LASSO predictions and (SAM vs. SUM). Standard errors were obtained with
100 bootstrap replications. Confidence intervals for a 5% significance level.

The fact that the two estimators consistently find zero estimated effects for all 2019

exporters (and for subgroups based on the values of individual observables) during the first

quarter suggests that the estimation error of both SUM and SAM, E0 and E1 respectively,

goes to zero when we average the individual treatment effects across the whole distribution of

2019 exporters (or in subgroups defined by one of the possible dimension of treatment effect

heterogeneity defined by observables; e.g., by industry or main export destination country).

However, since our goal is to identify the main dimensions of treatment effect heterogeneity

by classifying units with the highest and lowest estimated treatment effects, we need also to

evaluate how well these alternative estimation strategies perform in identifying treatment

effects at the extremes of the distribution of treatment effects. Figure 6 shows the average

of the estimated treatment effects obtained with the two estimators for the observations

whose estimated treatment effects (by using Y − SUM) are contained in intervals defined

by two consecutive values of the estimated percentiles of Y − SUM . On the one hand, the

estimator based on Y − SUM is also identifying significant treatment effect heterogeneity

in the first quarter, suggesting that the distribution’s estimation error, E0, is not zero on

average in the tails. Moreover, the shape of the Y − SUM curve is similar across quarters,

suggesting that this estimation method will be prone to misclassify units when using the

Sorted Effects strategy suggested above. On the other hand, in the first quarter, the shape

of the SAM − SUM curve is flat, showing a constant average estimated effect that is zero

along the whole distribution of the Y − SUM estimated effects, suggesting that by using
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the SAM we are able to wash out the estimation error of the SUM because E1 = E0.
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Figure 6: Estimated average treatment effects (SAM − SUM , red line, and Y − SUM , blue line)
by quarter for observations contained in intervals defined by the estimated percentiles of Y −SUM .

This behavior of the estimators based on SAM − SUM is consistent with the results

shown in Figure 4 for the Sorted Effects analysis. Figure 7 shows that the intuition on the

inadequacy of the Y − SUM -based estimators to identify treatment effects on the tail of

the distribution is also confirmed by the Sorted Effects analysis based on this estimation

strategy. When using the Y − SUM individual level estimates to feed the SPE methodology,

we find economically and statistically significant effects of the COVID-19 shock all along the

percentile distribution in the first quarter. While it is true that, on average, E0 tends to be

zero across all observations, these findings suggest that this is not true when we focus on

specific segments of the treatment effect distribution, particularly in the tails.

Table 4 presents the classification analysis results on the sources of treatment effect

heterogeneity when the CADiff is estimated using the (Y − SUM) approach. For all the

firm characteristics we examined, we found no statistically significant difference between

the most and least affected groups. This is consistent with the inability of the Y − SUM

approach to consistently estimate treatment effects in the tails of the α’s distribution and,

consequently, to identify the groups of the most affected and the least affected firms. In

other words, such groups will be contaminated by the inclusion of firms wrongly classified

due to the estimation error E0.
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Table 4: Estimated differences in means of the estimated treatment effect and other covariates
between the group of more affected and the group of less affected firms (CADiff) applying the
classification analysis to the Y − SUM estimates

Outcome variable β
(1)
1,f β

(2)
1,f β

(3)
1,f

TE -1.0910 -1.0930*** -1.0710
Agriculture -0.0616
Chemicals -0.0192
Manufacturing 0.0112
Metals 0.0109
Special 0.0059
Textile 0.0486
Wood 0.0041
Air 0.0411 0.0271 0.0289
Land 0.0086 0.0062 0.0068
Sea -0.0482 -0.0321 -0.0343
Jan -0.0190 -0.0189
Feb -0.0242 -0.0237
Mar -0.0181 -0.0181
Apr 0.0631 0.0630
May 0.0620 0.0612
Jun 0.0166 0.0167
Jul 0.0033 0.0028
Aug -0.0050 -0.0053
Sep -0.0169 -0.0167
Oct -0.0216 -0.0208
Nov -0.0218 -0.0222
Dec -0.0183 -0.0181
Number of export destinations (ND) 0.3310 0.3470 0.3306
Number of import origins (NO) 0.0350 -0.0595 -0.1077
Number of exported products (NP) 0.6050 0.4670 0.4275
Containment Index Stringency Export -0.2280 -0.0264 0.9690
Containment Index Stringency Import -4.2180 -4.4910 -0.0520
Value Exported (log) -0.2700 -0.2760 -0.1800
Value Imported (log) -0.0910 0.0296 0.0040
Deviation from sectoral mean ✓ ✓
Deviation from monthly mean ✓

Notes: column 1 does not include sector or month variables in
the regression; column 2 includes sector in the regression, and,
column 3 includes both the sector and month variables. ∗∗∗ means
significant at 1%, ∗∗ at 5%, ∗ at 10%. Standard errors are obtained
by bootstrapping the whole estimation process and joint p-values
are adjusted to take into account the simultaneous testing of all the
variables.
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5 Concluding discussion

In this paper, we show the potential of ML techniques for building counterfactuals, identifying

the most affected subpopulations and the sources of treatment effect heterogeneity in scenarios

where a credible control group is unavailable and it is difficult to define ex-ante the varying

degrees of exposure to a shock for each economic agent.

In the application we consider, we concentrate on the effects of an economy-wide shock

such as COVID-19 on a firm’s export behaviour. Using data from the Colombian customs

office, we estimate that, during 2020, on average, the COVID-19 shock decreased a firm’s

probability of surviving in the export market by about 15 to 20 percentage points in April

and May and by approximately 5 to 8 percentage points in June and July. By analysing the

estimated treatment effect distribution, we reveal that these average results hide considerable

heterogeneity. For example, in April 2020, we find that for some exporters COVID-19

decreased their survival probability by 55 percentage points. We identify the firms most

and least affected by COVID-19 and we compare their characteristics by integrating the

Sorted Partial Effects methodology with our causal ML approach. We emphasize how the

integration into global value chains on the import side, both in terms of the number of

countries from which a firm sources and the value of imports, is an important factor of

resilience for exporters facing the COVID-19 shock.

From a methodological point of view, we show practitioners how to apply the generic

ML tools proposed by Chernozhukov et al. (2020) to a context in which there is no control

group available; we suggest how to use in-time placebo tests to check the credibility of

counterfactual estimates; finally, we provide evidence indicating that in the Sorted Partial

Effects analysis, in which the focus lies on the tails of the distribution of the treatment

effects, it is critical to correct the estimation error arising from the necessarily imperfect

reconstruction of the unobservable counterfactual.

While this method is specifically designed for analyzing the heterogeneous impacts of

economy-wide shocks, there exists potential utility in employing this approach in less extreme

situations where policies or shocks may exhibit unobservable spillovers that are challenging

to model in advance. In such contexts, our empirical framework proves advantageous in

detecting these potential heterogeneous indirect effects, as it circumvents the need for a

priori identification of a control group of untreated units.

Finally, in this paper we also demonstrate that ML methods can be applied successfully

to predict firms’ trade potential. We consider ML methods a promising tool to assist

firms and public agencies in their export decision-making processes. The bulk of countries

possesses export promotion agencies whose objective is to sustain firms’ internationalization

activities by lowering the costs of information acquisition (Broocks and Van Biesebroeck, 2017;

Munch and Schaur, 2018). Given that exporters’ dynamics can be understood as a complex

learning process dense of interdependencies (complementarity or substitutability) between

products and destination markets (from the perspective of technology/knowledge, local tastes,

27



legal requirements, and marketing and distribution costs) and that ML techniques have

been successfully applied to predict firm performances in such settings, we believe that an

important avenue for future research is to test the effectiveness of using these techniques and

firm-level data to build recommendation systems. These systems could help firms identify

their latent comparative advantages and provide export diversification and differentiation

recommendations.
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ONLINE APPENDIX

A Appendix - The Colombian economy amidst the

COVID-19 crisis

Colombia exports little compared to other countries in Latin America with similar development

levels. In recent years, the share of total exports of Colombian GDP has oscillated around 15%, well

below other countries in the region such as Chile and Mexico (Cepeda-López et al., 2019). Colombia

started to open its economy in the 1990s with several market-oriented reforms to liberalize financial

and capital markets. Although the Colombian economy was still relatively closed during most

of the twentieth century (Ocampo and Tovar, 2000), it has been strongly affected by the global

financial crisis in 2008-2009 (Zuluaga et al., 2009). Nowadays, despite the growing number of trade

agreements, partners, and volume of trade, the integration of Colombia into world trade markets is

still modest.

The main reason behind Colombia’s poor performance is the low diversification of trade, with

a prevalence of primary products, because of the relative abundance of natural resources and

low-skilled labor. Besides, the emergence of raw products derived from mining has gained a larger

share in total exports, reducing the importance of other products such as coffee, bananas, flowers,

some labor-intensive manufactures, and petrochemicals (Garavito et al., 2020).

Since the outbreak of the COVID-19 pandemic, Colombia implemented early measures to

contain the spread of COVID-19 and prepare the health system and mitigate the economic and

social impact. The Colombian government issued non-compulsory requests for remote working to

private companies on February 24, 2020; schools and universities were closed on March 16. On

March 25, when there were less than a dozen deaths, the government implemented a complete and

mandatory lockdown until April 13. During this period, only a few essential activities – such as

health services, public services, communications, banking and financial services, food production,

pharmaceuticals, and cleaning and disinfection products – were excluded. The partial lockdown

implementation–between April 27 and May 11–allowed a gradual restoration of mobility, enabling a

set of non-essential activities under security guidelines and protocols to guarantee social distancing.

Most manufacturing activities were gradually allowed at this stage, while non-authorized activities

were restricted to market their products through electronic commerce platforms. Finally, from

May 28, restrictions to the services sector have been lifted, and on September 1, the government

announced the confinement end, and airports were opened.

To better cope with the emergency, Colombian authorities have introduced transitory provisions

to secure international trade of essential products. Along with the lockdown measures, medicines,

supplies, and equipment in the health sector had zero-tariff for six months. Besides, the export and

re-export of these products were forbidden. There was a zero-tariff from April 7 to June 30 for raw

materials such as maize, sorghum, soybeans, and soybean cake.

1



B Appendix - Data

Table Appx.1: Predictors for exporters success

Variable Description Source

Models: SUM and SAM

NP,ND,NO Number of products exported by, number of destinations where a company exports, and number of

import origin countries for an exporter in a given month, respectively.

Authors’ own elaboration

from Colombian Customs

Office (DIAN).

HHp, HHd Product-Herfindahl Index, and Destination-Herfindahl Index. Measure the concentration of products

at 6-digits HS, and the concentration at destination by company-month, respectively.

Authors’ own elaboration

from Colombian Customs

Office (DIAN).

Total value

(exports)

Free on board value of the export transaction in US dollars for each company-month. Colombian Customs Office

(DIAN)

Total value

(imports)

Free on board value of the import transaction in US dollars for each company-month. Colombian Customs Office

(DIAN)

Size 4 class dummies classifying firms according to the quartiles of the firm-level (Q1, Q2, Q3 and Q4)

distribution of the total monthly value of exports (in ln).

Authors’ own elaboration

Destination Factor variable with one level (dummy variable) for each destination country where Colombian

exporters operate by month.

Colombian Customs Office

(DIAN)

Origin Factor variable with one level (dummy variable) for each import origin country where Colombian

exporters operate by month.

Colombian Customs Office

(DIAN)

Continent Factor variable with one level (dummy variable) for each continent where Colombian exporters

operate.

Authors’ own elaboration

Department Factor variable with one level (dummy variable) for each department (region) in Colombia from

which companies operate.

Colombian Customs Office

(DIAN)

Means of

Transportation

4 class dummies indicating the means of transportation a company use to perform a transaction

(land, sea, air, others).

Colombian Customs Office

(DIAN)

Sector 99 class dummies classifying company products at 2-digit HS code (corresponding to a HS-chapter). Authors’ own elaboration

Industry 22 class dummies indicating the industries (HS-sections) where companies operate. Authors’ own elaboration

from Colombian Customs

Office (DIAN).

Sector

Experience

Factor variable with one level (dummy variable) for each sector. Takes value 1 in all periods after

a company exports for first time in a given sector (reflecting past experience in a sector).

Authors’ own elaboration

from Colombian Customs

Office (DIAN).

Destination

Experience

Factor variable with one level (dummy variable) for each destination. Takes value 1 in all periods

after a company exports for first time in a given destination (reflecting past experience in a

destination).

Authors’ own elaboration

from Colombian Customs

Office (DIAN).

Exporter

(importer)

Experience

Variable counting the accumulated value exported (imported) in the last twelve months. Authors’ own elaboration

from Colombian Customs

Office (DIAN).

Models: SAM (COVID-19 variables)

Containment

Economic

Index

We consider the Economic Index from Hale et al. (2020) that provides a measure of the strength

of the economic policies set in place to deal with the pandemic (such as income support and

debt relief) for each country in the world. It ranges from 0 to 100. At the firm level we define

two variables, one at the export and one at the import side, by taking a weighted average of

these country level scores according to the monthly value of exports(imports) that a company

ships(source) in every country.1

Hale et al. (2020) and

Colombian Customs Office

(DIAN).

Containment

Government

Index

We consider the Government Index from Hale et al. (2020) that measures the strictness of ’lockdown’

style policies that primarily restrict people’s behavior. It ranges from 0 to 100. At the firm level

we define two variables, one at the export and one at the import side, by taking a weighted average

of these country level scores according to the monthly value of exports(imports) that a company

ships(source) in every country.

Hale et al. (2020) and

Colombian Customs Office

(DIAN).

Containment

Health Index

We consider the Health Index from Hale et al. (2020) that combines ’lockdown’ restrictions and

closures with measures such as testing policy and contact tracing, short term investment in

healthcare, as well investments in vaccine). Ranges from 0 to 100. At the firm level we define

two variables, one at the export and one at the import side, by taking a weighted average of

these country level scores according to the monthly value of exports(imports) that a company

ships(source) in every country.

Hale et al. (2020) and

Colombian Customs Office

(DIAN).

Containment

Stringency

Index

We consider the Stringency Index from Hale et al. (2020) that records how the response of

governments has varied over all indicators, becoming stronger or weaker over the course of the

outbreak. Ranges from 0 to 100. At the firm level we define two variables, one at the export and

one at the import side, by taking a weighted average of these country level scores according to the

monthly value of exports(imports) that a company ships(source) in every country.

Hale et al. (2020) and

Colombian Customs Office

(DIAN).

Models: SUM and SAM (variables only for Logit, Logit-LASSO, and Logit-Ridge)

Size*Industry Factor variables with 5 levels for each industry. Takes value 1 when the company size is Q1, value

2 when company size is Q2, value 3 when the size is Q3 and 4 when the size is Q4 while operating

in a given industry. However, it takes value 0 if a company is not operating in this industry (for

any size level).

Authors’ own elaboration

from Colombian Customs

Office (DIAN).

Size*Sector Factor variables with 5 levels for each sector. Takes value 1 when the company size is Q1, value

2 when company size is Q2, value 3 when the size is Q3 and value 4 when the size is Q4 while

operating in a given sector. However, it takes value 0 if a company is not operating in this sector

(for any size level).

Authors’ own elaboration

from Colombian Customs

Office (DIAN).

Size*Means

of

Transportation

Factor variables with 5 levels for each sector. Takes value 1 when the company size is Q1, value

2 when company size is Q2, value 3 when the size is Q3 and value 4 when the size is Q4 while

operating using a given means of transportation. However, it takes value 0 if a company is not

operating using this means of transportation (for any size level).

Authors’ own elaboration

from Colombian Customs

Office (DIAN).

Size*Destination Factor variables with 5 levels for each sector. Takes value 1 when the company size is Q1, value

2 when company size is Q2, value 3 when the size is Q3 and value 4 when the size is Q4 while

operating in a given destination. However, it takes value 0 if a company is not operating in this

destination (for any size level).

Authors’ own elaboration

from Colombian Customs

Office (DIAN).

* https://data.europa.eu/euodp/en/data/dataset/covid-19-coronavirus-data

1 When an exporter does not import we impute the corresponding internal Index (Economic, Government, Health, and Stringency) of Colombia to

create the corresponding import side Index.
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Table Appx.2: Sector-Industry mapping

Section (Industry) Industry Name HS-Chapter (Sector)

1 Live Animals/ Animal Products 1-5
2 Vegetable Products 6-14
3 Animal or Vegetable Fats/Oils 15
4 Prepared Foodstuffs 16-24
5 Mineral Products 25-27
6 Products of Chemical Industries 28-38
7 Plastics, Rubber 39-40
8 Raw Hides, Skins and Leather 41-43
9 Wood 44-46
10 Paper 47-49
11 Textile 50-63
12 Footwear 64-67
13 Art. of Stone, Cement 68-70
14 Jewelries 71
15 Base Metals 72-83
16 Machinery Equipment 84-85
17 Vehicles 86-89
18 Precision Instruments 90-92
19 Arms 93
20 Miscellaneous Manufactured Articles 94-96
21 Works of Art 97
22 Special Classification Provisions 98-99

Source: Author’s elaboration using Pierce and Schott (2012) tables.
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C Appendix - Descriptive Statistics

The left panel in Figure Appx.1 shows the evolution of total monthly exports during 2019 and

2020. The total monthly value of exports in 2020 is significantly lower than the one observed

for the corresponding month in 2019, except for January and February. The lockdown measures

implemented to contain the COVID-19 outbreak in Colombia and abroad had a severe impact

between April and June–the value in April 2020 is half of the one observed in April 2019 (47%).
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Figure Appx.1: The evolution of total exports (left) and the proportion of surviving exporting
firms in year t among those exporting in year t− 1 within size classes defined at t− 1 (right). Firm
size classes are based on the quartiles of the firms’ exports (in ln) distribution in a given month.

In a typical month, large firms get a lion’s share of the total exports. A regular pattern in

looking at customs data is that more prominent exporters trade for many months and ship more

frequently than smaller firms, which make only a few shipments. The right panel in Figure Appx.1

shows the proportion of surviving exporting firms in year t among those exporting in year t− 1,

by size classes defined at t − 1. Comparing the figures for 2020 with those for 2019, it seems

that the COVID-19 outbreak affected all firms regardless of their size. However, the effect looks

proportionally stronger for small firms (Q1 and Q2 of the distribution). In contrast, larger firms

are less affected and recover faster than the survival rates observed in 2019.

In the following of this Appendix C, we show the growth patterns of the number of exporters and

export volumes between 2019 and 2020 (and, as a comparison, between 2018 and 2019) segmented

by country of destination and product sector, offering further insights into the heterogeneous

impacts of the COVID-19 pandemic on Colombian exports.

Figure Appx.2 shows, separately for the first and second quarter of a year, the percentage of

firms that survive, enter or exit the export market and their corresponding shares of total exports.

Thus, for a given quarter in 2019 and the corresponding quarter in 2020, we label each firm as

exiting when it is present in 2019 and absent in 2020, entrant when it is absent in 2019 and present

in 2020, and surviving when it is present in both years. We average the total value exported by

each firm during the same quarter of two different years. Then, we sum the individual average

value exported according to the firms’ status. It turns out that surviving firms play an essential

role in explaining total exports: they are around half of the total number of firms in both quarters

and account for about 90% of the total export value. The volume lost, during the second quarter

4



of 2020, due to exiting firms is around 5% (assuming they would have exported in 2020 similar

export volumes as observed in 2019). Entrant firms almost made up this 5% loss. Despite this, the

firms’ composition that participates in exports is very different. The number of existing firms in

the second quarter of 2020 is much higher than the share of the first quarter of 2020 and the share

of 2019 in the same period of the year.

0

10

20

30

40

50

60

70

80

90

100

entrant exiting surviving
Firm status

S
ha

re
 (

%
),

 J
an

−
M

ar
 2

01
9

Number of firms

Total exported value

0

10

20

30

40

50

60

70

80

90

100

entrant exiting surviving
Firm status

S
ha

re
 (

%
),

 A
pr

−
Ju

n 
20

19

Number of firms

Total exported value

0

10

20

30

40

50

60

70

80

90

100

entrant exiting surviving
Firm status

S
ha

re
 (

%
),

 J
ul

−
S

ep
 2

01
9

Number of firms

Total exported value

0

10

20

30

40

50

60

70

80

90

100

entrant exiting surviving
Firm status

S
ha

re
 (

%
),

 O
ct

−
D

ec
 2

01
9

Number of firms

Total exported value

0

10

20

30

40

50

60

70

80

90

100

entrant exiting surviving
Firm status

S
ha

re
 (

%
),

 J
an

−
M

ar
 2

02
0

Number of firms

Total exported value

0

10

20

30

40

50

60

70

80

90

entrant exiting surviving
Firm status

S
ha

re
 (

%
),

 A
pr

−
Ju

n 
20

20

Number of firms

Total exported value

0

10

20

30

40

50

60

70

80

90

entrant exiting surviving
Firm status

S
ha

re
 (

%
),

 J
ul

−
S

ep
 2

02
0

Number of firms

Total exported value

0

10

20

30

40

50

60

70

80

90

entrant exiting surviving
Firm status

S
ha

re
 (

%
),

 O
ct

−
D

ec
 2

02
0

Number of firms

Total exported value

Figure Appx.2: Entry-exit dynamics of firms and total export value by firms that drop, enter or
stay active, in 2019 (upper part of the figure) and in 2020 (bottom part of the figure) by quarters.
Firm status is defined by looking at the previous year.

Figures Appx.3 and Appx.4 show the growth of the total number of exporters and the growth

of the total volume of exports between 2019 and 2020, by country of destination and product sector.

We consider the first and the second quarter separately, and we select destinations and product

sectors that account for 80% of the total exporters in 2019. In both figures, the product sectors

and the destinations are arranged by importance from top to bottom.

Figure Appx.3 shows that, compared to the first quarter of 2020, the second quarter of the year

is characterized by a severe and pervasive drop in the number of exporting firms and the volume of

exports in almost all the destinations reported. Figure Appx.5 shows that the same drop is not

observed during the second quarter of 2019. During the third and fourth quarters of 2020, the

value exported experienced more volatility than the number of firms. Nevertheless, the latter did

not recover to the growth rates of the first quarter of the year.

Exports by product sectors in the second quarter of 2020 (see Figure Appx.4) reveal a generalized

decrease in the number of exporting firms and trade values, while the first quarter exhibits very

heterogeneous patterns. The sectors that appear to be more severely affected in the second quarter

are Footwear (HS64), Leather Articles (HS42), Furniture (HS94), Books (HS49), Articles of Metal

(HS83), Knitted and Not-Knitted Accessories (HS61-62), Vehicles (HS87) and Articles of Iron or

Steel (HS73). Interestingly, these sectors are relatively more labor-intensive in Colombia, and

therefore they could be susceptible to disruptions connected to social distancing. Finally, only for

Coffee and Tea (HS08), Other textiles (HS63), and Jewelries (HS71) exports in value significantly

grew in the second quarter. Instead, in terms of the number of exporting firms, no product sectors

exhibit notable positive dynamics. During the third and fourth quarters of 2020, there is a rapid
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Figure Appx.3: The growth of the total number of exporters and the total value of exports by the
destination country for the four quarters of 2020. Orange bars represent negative growth and blue
bars positive growth. Destination countries are sorted from top to bottom accordingly to their
importance in the share of the number of exporters in 2019.

back to normality in both the growth of value exported and in the number of exporters’ growth

rate by sector. Figure Appx.6 shows the same figures for 2019, suggesting that in periods without

relevant shocks – such as the ones of the first quarter of 2020 – the changes in exports are also very

heterogeneous, but there are not such extreme changes.
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Figure Appx.4: The growth of the total number of exporters and the total value of exports by
sector for the four quarters of 2020. Orange bars represent export reductions and blue bars positive
export growth. Product sectors are sorted from top to bottom according to their importance in the
share of the number of exporters in 2019. Product sectors correspond to the chapters of the HS
code in parenthesis and the full name of the chapters is shortened to improve readability.
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Figure Appx.5: The growth of the total number of exporters and the total value of exports by
destination country for the first and the second quarters of 2019. Orange bars represent negative
growth and blue bars positive growth. Destination countries are sorted from top to bottom
accordingly with their importance in the share of number of exporters in 2019.
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Figure Appx.6: The growth of the total number of exporters and the total value of exports by sector
for the first and the second quarters of 2019. Orange bars represent export reductions and blue
bars positive export growth. Product sectors are sorted from top to bottom accordingly with their
importance in the share of number of exporters in 2019. Product sectors correspond to the chapters
of the HS-code in parenthesis, the full name of the chapters is shortened to improve readability.

D Appendix - Statistical Significance of the CADiff

Starting from B bootstrap replications of all the estimation steps (including the prediction stage),

we calculate the CADiff B times. To determine the significance of the CADiff we perform a

two-tailed test. The p-values are constructed as follows:

2 ·min{Pr(S ≥ t|H0), P r(S ≤ t|H0)}

being t the observed t test statistic, t =
˜CADifforiginal

σ̃ , drawn from the unknown distribution S. σ̃

represents the standard deviation of the bootstrapped CADiff . To adjust the p-values and obtain

the joint p-values taking into account that we are testing hypotheses jointly on many covariates,

we reproduce the “single-step” method employed by Chernozhukov et al. (2018) to control for the

family-wise error rate.

In the following is described the single-step algorithm. We will indicate the bootstrap version of

a variable, v, as ṽ and its estimated version (on the original data) as v̂. Moreover, Λ(x)−u will denote

the first moment for the feature x of interest in the least affected group including the observational

units i such that αi < α∗(u). Similarly, Λ(x)+u defines the first moment for the variable x of

interest in the most affected group including the observational units i such that αi > α∗(1− u).

Since we do not observe α directly, the mentioned quantities are estimated. According to the

above convention, the estimated value of Λ(x)−u (Λ(x)+u) will be Λ̂(x)−u (Λ̂(x)+u) indicating the

first moment for the variable x of interest for firms i such that α̂i > α̂∗(u) (α̂i < α̂∗(1 − u)). In

the present paper u = 25, however, we will maintain the more general u notation for the sake of

consistency with Section 4.

The single-step algorithm proceeds as follows: 1) for each variable x ∈ Xt, compute Λ̃(x)+u and

Λ̃(x)−u, bootstrap draws of Λ̂(x)+u and Λ̂(x)−u respectively. We want to test the null hypothesis, H0,

that Λu(x) = 0, for Λu(x) = [Λ(x)−u,Λ(x)+u]. 2) Construct a bootstrap draw of the distribution of
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(Λ̂+u(x)−Λ̂−u(x)), Zu
∞(x). The latter is obtained by exploiting the bootstrap version of Λ+u(x) and

Λ−u(x), namely: Z̃∞(x) =
√
n(Λ̃u(x)−Λ̂u(x)) where Λ̃u(x) = [Λ̃(x)−u, Λ̃(x)+u]18. 3) Repeat steps 1)

and 2) B times; 4) compute a bootstrap estimator of the variance of Z∞ as Σ̂u(x) =
qu0.75(x)−qu0.25(x)

z0.75−z0.25

being qup (x) the pth sample quantile of Z̃∞(x) and zp the pth quantile of a standard normal

distribution. 5) Use the latter to construct the test statistic τ̃(Xt) = supx∈Xt |Z̃∞(x)| · |Σ̂u(x)|−1/2.

A p-value for the null H0 that Λu(x) = 0 for all x ∈ Xt of the realization of the estimated statistic,

supx∈Xt |Λ̂u(x)| · |Σ̂(x)|−1/2 = s, is given by the average number of times that τ̃(Xt) is greater than s,

where s =
˜βm
1,f

Σ̂u(x)
. The .̃ indicates simply that the βm

1,f has been projected to the bootstrap dimension.

18Similarly, Λ̂u(x) = [Λ̂(x)−u, Λ̂(x)+u]
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E Appendix - Comparison with Chernozhukov et al.

(2020)

We show that our empirical strategy is built on the same pillars as Chernozhukov et al. (2020),

but applies them to a different setting. To simplify the exposition, we refer to Table Appx.3 which

provides a simplified representation of our empirical setting.

Chernozhukov et al. (2020) deal with an experimental empirical setting in which one can easily

separate a treated group from a control group. In order to study the heterogeneity of the average

treatment effect, the first step of Chernozhukov et al. (2020) is to split randomly the sample under

analysis in an auxiliary (A) and a main sample (M) of approximately the same size. Then, they

employ ML techniques to learn in A the function approximating the potential outcomes in the

treatment and non-treatment scenarios, while M is used to make inferences on the key features of

treatment effect heterogeneity. In other words, they estimate the function describing the outcome in

case of treatment (no treatment) on the subset of treated (non-treated) firms contained in A. These

two estimated functions are used to impute the two potential outcomes for each firm contained

in the M sample (the difference represents the estimated individual treatment effects) and study

the treatment effect heterogeneity estimated for these firms by using, inter alia, the Sorted Effects

method (Chernozhukov et al., 2018). This procedure is designed in this way to avoid overfitting

(i.e., doing learning and prediction using the same sample), and, starting from the random splitting,

it is repeated many times in order to obtain many distributions of estimated treatment effects to

which the Sorted Effects method is applied.

Our Setting
Chernozhukov
(2020) Setting

SUM SAM A−M splitting

(X2018, Y2019)1 (X2019, Y2020)11 (X2019, Y2020)11 (X2019, Y2020)11
(X2018, Y2019)2 (X2019, Y2020)12 (X2019, Y2020)12 (X2019, Y2020)12
(X2018, Y2019)3 (X2019, Y2020)13 (X2019, Y2020)13 (X2019, Y2020)13
(X2018, Y2019)4 (X2019, Y2020)14 (X2019, Y2020)14 (X2019, Y2020)14
(X2018, Y2019)5 (X2019, Y2020)15 (X2019, Y2020)15 (X2019, Y2020)15
(X2018, Y2019)6 (X2019, Y2020)16 (X2019, Y2020)16 (X2019, Y2020)16
(X2018, Y2019)7 (X2019, Y2020)17 (X2019, Y2020)17 (X2019, Y2020)17
(X2018, Y2019)8 (X2019, Y2020)18 (X2019, Y2020)18 (X2019, Y2020)18
(X2018, Y2019)9 (X2019, Y2020)19 (X2019, Y2020)19 (X2019, Y2020)19
(X2018, Y2019)10 (X2019, Y2020)20 (X2019, Y2020)20 (X2019, Y2020)20

Table Appx.3: A simplified representation of our empirical setting in which we compare the methods
used in the present paper to those described in Chernozhukov et al. (2020).

A

M

As an example, in Table Appx.3, we represent 20 exporting firms observed in 2018 or in

2019. In the context of our setting, the strategy of (Chernozhukov et al., 2018) would imply that
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the 2019 sample, for which we are interested in estimating the average treatment effect, should

be divided in two, as shown in the last column of Table Appx.3. However, in the COVID-19

scenario, one cannot easily separate treated and control units because COVID-19 imposes a (at least

indirect) treatment over all units, hence preventing the possibility of discerning between treated

and controls.19 Moreover, with respect to Chernozhukov et al. (2020), in our empirical setting, we

do not have the necessity to predict the outcome of controls in the case of “no treatment” because

we are not interested in estimating the COVID-19 effect on 2018 exporters. Therefore, we do not

have to split the controls observed in 2018 in two halves to avoid overfitting and this enables us to

reconstruct a counterfactual outcome of no treatment for each 2019 exporter without incurring in

overfitting problems. Therefore, in this paper for the SUM we use as an auxiliary sample all the

Colombian exporters observed in 2018 (A) and as the main sample (M) all the Colombian exporters

observed in 2019. For the SAM, we perform instead a K-Fold splitting in which, iteratively we

select 80% of the firms in 2019-2020 as being part of A and the remaining 20% as being part of

M . This is shown in the column “Our Setting (SAM)” of Table Appx.3, where different A (and,

accordingly different M) groups are selected according to the different colors of the dashed circles.

In this way we avoid overfitting problems and, at the same time, we exploit all the available data

by being able to compare the predicted probabilities to export in the COVID-19 with those in the

non-COVID-19 scenario for all the observed 2019 exporters.

19Furthermore, even if we assume that during the first three months of the year there was no COVID-19
effect going on, and therefore we categorize as non-treated (treated) firms operating in those months (in the
other remaining months), and we use the non treated firms in the auxiliary sample to learn, it would be
problematic to use the learning outcome in case of no treatment during the first three months to predict the
outcome in case of no treatment for the treated firms that are those in the last 8 months because of the strong
seasonality effects we have. So the outcome during the first three months in case of no treatment would be
very different from the outcome of the last months in case of no treatment just because of seasonality effects.
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